Causes of insertion sequences abundance in prokaryotic genomes.

نویسندگان

  • Marie Touchon
  • Eduardo P C Rocha
چکیده

Insertion sequences (ISs) are the smallest and most frequent transposable elements in prokaryotes where they play an important evolutionary role by promoting gene inactivation and genome plasticity. Their genomic abundance varies by several orders of magnitude for reasons largely unknown and widely speculated. The current availability of hundreds of genomes renders testable many of these hypotheses, notably that IS abundance correlates positively with the frequency of horizontal gene transfer (HGT), genome size, pathogenicity, nonobligatory ecological associations, and human association. We thus reannotated ISs in 262 prokaryotic genomes and tested these hypotheses showing that when using appropriate controls, there is no empirical basis for IS family specificity, pathogenicity, or human association to influence IS abundance or density. HGT seems necessary for the presence of ISs, but cannot alone explain the absence of ISs in more than 20% of the organisms, some of which showing high rates of HGT. Gene transfer is also not a significant determinant of the abundance of IS elements in genomes, suggesting that IS abundance is controlled at the level of transposition and ensuing natural selection and not at the level of infection. Prokaryotes engaging in obligatory associations have fewer ISs when controlled for genome size, but this may be caused by some being sexually isolated. Surprisingly, genome size is the only significant predictor of IS numbers and density. Alone, it explains over 40% of the variance of IS abundance. Because we find that genome size and IS abundance correlate negatively with minimal doubling times, we conclude that selection for rapid replication cannot account for the few ISs found in small genomes. Instead, we show evidence that IS numbers are controlled by the frequency of highly deleterious insertion targets. Indeed, IS abundance increases quickly with genome size, which is the exact inverse trend found for the density of genes under strong selection such as essential genes. Hence, for ISs, the bigger the genome the better.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile of Eight Prophage Sequences Present in the Genomes of Different Acinetobacter baumannii Strains

ABSTRACT           Background and Objective: Prophage sequences are major contributors to interstrain variations within the same bacterial species. Acinetobacter baumannii is a gram-negative bacterium that causes a wide range of nosocomial infections, especially in intensive care unit inpatients. Prophage sequences constitute a considerable proporti...

متن کامل

Analysis of long repeats in bacterial genomes reveals alternative evolutionary mechanisms in Bacillus subtilis and other competent prokaryotes.

Prokaryotic genomes seem to be optimized toward compactness and have therefore been thought to lack long redundant DNA sequences. However, we identified a large number of long strict repeats in eight prokaryotic complete genomes and found that their density is negatively correlated with genome size. A detailed analysis of the long repeats present in the genome of Bacillus subtilis revealed a ve...

متن کامل

TnpPred: A Web Service for the Robust Prediction of Prokaryotic Transposases

Transposases (Tnps) are enzymes that participate in the movement of insertion sequences (ISs) within and between genomes. Genes that encode Tnps are amongst the most abundant and widely distributed genes in nature. However, they are difficult to predict bioinformatically and given the increasing availability of prokaryotic genomes and metagenomes, it is incumbent to develop rapid, high quality ...

متن کامل

The prokaryotic selenoproteome.

In the genetic code, the UGA codon has a dual function as it encodes selenocysteine (Sec) and serves as a stop signal. However, only the translation terminator function is used in gene annotation programs, resulting in misannotation of selenoprotein genes. Here, we applied two independent bioinformatics approaches to characterize a selenoprotein set in prokaryotic genomes. One method searched f...

متن کامل

Prokaryotic Genome Annotation Pipeline

The process of annotating prokaryotic genomes includes prediction of protein-coding genes, as well as other functional genome units such as structural RNAs, tRNAs, small RNAs, pseudogenes, control regions, direct and inverted repeats, insertion sequences, transposons, and other mobile elements. Bacterial and archaeal genomes have the considerable advantage of usually lacking introns, which subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2007